
Solutions to Question Sheet 9, Differentiation IV. v1 2019-20

More Examples for extra practice

1. Evaluate

lim
x→0

sin
(
(3 + x)2

)
− sin 9

x
.

Hint: Recognize it as a derivative.

Solution Set f(x) = sin
(
(3 + x)2

)
, then

sin
(
(3 + x)2

)
− sin 9

x
=
f(x)− f(0)

x− 0
.

So

lim
x→0

sin
(
(3 + x)2

)
− sin 9

x
= f ′(0) .

The function f(x) is the composite of sin y and y = (3 + x)2 , both of
which are differentiable. By the composite rule for differentiation we
have

df(x)

dx
=

d sin y

dy

dy

dx
= cos y×2 (3 + x)

= 2 (3 + x) cos
(
(3 + x)2

)
.

Hence

lim
x→0

sin
(
(3 + x)2

)
− sin 9

x
= 2 (3 + x) cos

(
(3 + x)2

)∣∣
x=0

= 6 cos 9.

2. Let fn : R→ R be defined by

fn(x) =


xn x > 0

0 x = 0

−xn x < 0

.
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By verifying the definition prove that for all n ≥ 1, the function fn is
n− 1 times differentiable with f

(n−1)
n is continuous on R but fn is not

n times differentiable.

Solution Proof by induction. Base case n = 1. Then f1 (x) = |x|
which is known to be continuous but not differentiable on R.

Assume that fk is k − 1 times differentiable with f
(k−1)
k continuous on

R but not differentiable. Consider fk+1. The only difficulty is checking
differentiability at x = 0. I leave it to the student to check that both
one-sided limits of

fk+1(x)− fk+1(0)

x− 0

as x → 0+ and x → 0− are zero so f
(1)
k+1(0) exists and is 0. It is then

easy to show that
f
(1)
k+1 (x) = (k + 1) fk (x)

for all x ∈ R. Thus, by the inductive hypothesis, f
(1)
k+1 is k − 1 times

differentiable with
(
f
(1)
k+1

)(k−1)
continuous on R but not differentiable.

Hence fk+1 is k times differentiable with f
(k)
k+1 continuous on R but not

differentiable.

Therefore, by induction, for all n ≥ 1 we have fn is n− 1 times differ-
entiable with f

(n−1)
n is continuous on R but not differentiable.

3. Let g : R→ R be defined by

g(x) =

 x2 sin
( π
x2

)
if x > 0,

0 if x ≤ 0.

i) Use the definition to show that g is differentiable at x = 0 and
find the value of g′(0) .

ii) Use the Chain Rule for Differentiation to find g′(x) for all x 6= 0.

iii) Calculate

g′
(

1√
2n

)
where n ∈ N.

iv) Prove that limx→0 g
′(x) does not exist and so g′ is not continuous.
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Aside: In the previous question a second derivative existed, was con-
tinuous but not differentiable. In this question, the first derivative
existed but was not continuous. By examining the family of functions
xk sin

(
π/x`

)
for integers k and ` you can construct functions that have

exactly the number of derivatives you want at a point but then its last
derivative is either not continuous at that point or, if continuous, not
differentiable.

Solution i) The definition of differentiable involves a limit. We will
consider the two one-sided limits.

Consider first x > 0, when

g(x)− g(0)

x− 0
=
x2 sin (π/x2)− 0

x− 0
,

Thus

lim
x→0+

g(x)− g(0)

x− 0
= lim

x→0+
x sin

( π
x2

)
.

By the Sandwich Rule this limit exists and equals 0.

Next, for x < 0 we have

g(x)− g(0)

x− 0
=

0− 0

x− 0
= 0.

Thus

lim
x→0−

g(x)− g(0)

x− 0
= lim

x→0−
0 = 0.

Since the two-sided limits exist and are equal we deduce that

g′(0) = lim
x→0

g(x)− g(0)

x− 0

exists and equals 0.

ii) For non-zero x > 0 we simply use the rules of differentiation to get

g′(x) = 2x sin
π

x2
− 2π

x
cos

π

x2
.
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iii) Substituting x = 1/
√

2n gives

g′
(

1√
2n

)
=

2√
2n

sin (2nπ)− 2π
√

2n cos (2nπ) = −2π
√

2n, (1)

since sin (2nπ) = 0 and cos (2nπ) = 1 for all n ∈ N.

iv) Assume that limx→0 g
′(x) does exist, with value ` say.

Choose ε = 1 in the definition of the limit to find δ > 0 such that
0 < |x| < δ implies |g′ (x)− `| < 1, i.e.

|g′(x)| = |g′ (x)− `+ `|
≤ |g′(x)− `|+ |`| by triangle inequality

< 1 + |`| . (2)

But if we choose n ∈ N sufficiently large and set xn = 1/
√

2n we can
have both 0 < |xn| < δ and, by (1) , |g′(xn)| = 2π

√
2n > 1 + |`|. This

contradicts (2) and thus our assumption, that the limit exists, is false.

4. Using the Mean Value Theorem prove that

arcsinx <
x√

1− x2

for all 0 < x < 1.

Solution Let

f(t) =
t√

1− t2
− arcsin t

for 0 < t < 1, noting that f(0) = 0. Then by Question 8, Sheet 7,

f ′(t) =

√
1− t2 − −2t

2
√
1−t2

1− t2
− 1√

1− t2
=

t

(1− t2)3/2
> 0

for our t. The Mean Value theorem applied to f the interval [0, x]
implies that there exists 0 < c < x for which

f(x)− f(0) = f ′(c) (x− 0) > 0.

This rearranges to the required result.
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5. Using the Mean Value Theorem prove that

ln (1 + x) >
x

1 + x
2

for x > 0.

Solution For t ≥ 0 define

f(t) = ln (1 + t)− t

1 + t
2

.

Given x > 0 consider f on the interval [0, x]. It satisfies the condition
of the Mean Value Theorem and so there exists 0 < c < x such that

f(x)− f(0) = f ′(c) (x− 0) .

Yet

f ′(t) =
1

1 + t
− (2 + t) 2− 2t

(2 + t)2
=

(2 + t)2 − 4 (1 + t)

(1 + t) (2 + t)2

=
t2

(1 + t) (2 + t)2
> 0

for all t > 0. Thus, since f(0) = 0, we have f(x) = f ′(c)x > 0 since
x > 0. This is the required result.

6. (Exam 2009)

i) Prove that
2x = x2

has at least three real solutions.

ii) Prove that it has exactly three real solutions.

Solution i) Let f(x) = 2x − x2 and look for some sign changes. Ran-
domly choosing integer values for x leads to f(−1) = −3/4, f(0) = 1.
We have a sign change so by the Intermediate Value theorem there is
a solution between −1 and 0.
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Trying more integer values for x we find f(1) = 1, f(2) = 0 (giving a
solution!) f(3) = −1 and f(4) = 0 giving another solution. Thus we
have 3 solutions.

ii) To show that it has exactly three solutions we assume, for a con-
tradiction, that it has more, i.e. at least four. Then by the result in
Question 1, Sheet 7, there exists a c ∈ R for which f (3) (c) = 0. In this
case f (3) (x) = (ln 2)3 2x which is never zero. This contradiction means
the function has at most 3 solutions. Since we know it has at least 3,
we conclude it has exactly 3 solutions.

7. Assume that f is continuous on [a, b] and differentiable on (a, b). Prove
that if a > 0 there exists c ∈ (a, b) such that

f(b) = f(a) + ln

(
b

a

)
cf ′(c) ,

Solution Apply the Cauchy Mean Value Theorem to f and g(x) = lnx.
This is allowable since x ∈ [a, b] and it is being assumed that a > 0.
Then there exists c ∈ [a, b] for which

f(b)− f(a)

lnb− lna
=
f ′(c)

1/c
.

This rearranges to the stated result.

8. i) Prove that
arcsinx+ arccosx

is constant on (−1, 1).

What is the value of this constant?

Hint: look at the derivative.

ii) What can you say about

arctanu+ arctan
1

u

for u > 0.
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Solution i. From Question 8, Sheet 7, we have

d

dx
(arcsinx+ arccosx) =

1√
1− x2

− 1√
1− x2

= 0

for x ∈ (−1, 1). Thus arcsinx+arccosx is constant on (−1, 1). To find
its value take x = 0, when arcsin 0 + arccos 0 = π/2. Hence

arcsinx+ arccosx =
π

2

for x ∈ (−1, 1).

Note this is simply the result that the two non-right angles in a right
angled triangle sum to π/2.

ii. Similarly

d

du

(
arctanu+ arctan

1

u

)
=

1

1 + u2
+
− 1

u2

1 + 1
u2

=
1

1 + u2
− 1

1 + u2
= 0.

So arctanu+ arctan 1
u

is constant. Take u = 1 to see that

arctanu+ arctan
1

u
= 2 arctan 1 = 2

(π
4

)
=
π

2
,

for all u > 0.

9. Do not use L’Hôpital’s Rule to evaluate the following limits i-iv, but
instead assume the following results:

lim
x→0

cos−1

x2
= −1

2
and lim

x→0

sinx− x
x3

= −1

6
.

i)

lim
x→0

x cosx− sinx

x3
,

Hint. Write x cosx− sinx = x cosx− x+ x− sinx.

ii)

lim
x→0

tanx− x
x3

,
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iii)

lim
x→0

tanx− x
tan3 x

,

iv)

lim
x→0

sin 3x− 3x

x3
,

v)

lim
x→0

sin 3x− 3 sinx

x3
.

Solution i) For x 6= 0 but near 0,

x cosx− sinx

x3
=

x cosx− x+ x− sinx

x3

=
x cosx− x

x3
+
x− sinx

x3

=
cosx− 1

x2
+
x− sinx

x3

→ −1

2
+

1

6
= −1

3
,

as x→ 0, using assumptions in the question.

ii) For x 6= 0 but near 0,

tanx− x
x3

=
sinx− x cosx

x3 cosx
= − 1

cosx

(
x cosx− sinx

x3

)

→ 1

1
×
(
−1

3

)
=

1

3
,

as x→ 0, using the result from Part i.

iii)

tanx− x
tan3 x

=
x3

tan3 x
× tanx− x

x3
= cos3 x

( x

sinx

)3 tanx− x
x3

→ 1×1× 1

3
=

1

3
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as x→ 0, using Part ii. along with results from lectures.

iv)
sin 3x− 3x

x3
= 27

sin 3x− 3x

(3x)3
= 27f(3x),

where f(x) = (sinx− x) /x3 when x 6= 0. By either L’Hôpital’s Rule
or Question 5ii, Sheet 8, we know that limx→0 f(x) = −1/6.

Hence

lim
x→0

sin 3x− 3x

x3
= 27 lim

x→0
f(3x) = −27

6
= −9

2
.

Note that we have implicitly used a result on limits of a composite
x 7−→ 3x 7−→ f(3x).

v) .

sin 3x− 3 sinx

x3
=

sin 3x− 3x+ 3x− 3 sinx

x3

= 27
sin 3x− 3x

(3x)3
− 3

sinx− x
x3

→ 27×
(
−1

6

)
− 3×

(
−1

6

)
= −4,

by Part iii.

10. In Question 14, Sheet 7, you were asked to show that

f(x) =


sinx

x
if x 6= 0

1 if x = 0,

is differentiable at x = 0.

Write down f ′(x) for all x ∈ R. Calculate f (2)(0) .

Hint you may recall that limx→0 (sinx− x) /x3 = −1/6.
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Solution

f ′(x) =


x cosx− sinx

x2
if x 6= 0

0 if x = 0,

For f (2)(0) consider

f ′(x)− f ′(0)

x− 0
=
x cosx− sinx

x3
.

This has been seen in the previous question, where it was shown to
have limit −1/3.

11. Use the Composition Rule for Differentiation to prove

i)
d

dy
arcsin

(
1

cosh y

)
= − 1

cosh y

for y > 0.

ii)
d

dy
(arctan (sinh y)) =

1

cosh y

for y ∈ R.
iii) Can you make up an example for arccos with an appropriate hy-

perbolic function?

Solution i) From Question 8, Sheet 7,

d

dy
arcsin y =

1√
1− y2

,

for −1 < y < 1. an earlier question. The Composition Rule then gives

d

dy
arcsin

(
1

cosh y

)
=

1√
1−

(
1

cosh y

)2×
(
− sinh y

cosh2 y

)

= −cosh y

sinh y
× sinh y

cosh2 y
= − 1

cosh y
.
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For the first equality we need −1 < 1/ cosh y < 1. But since cosh y ≥ 1
with equality at y = 0 this means y 6= 0. We also take the positive

square root in
√

cosh2 y − 1 = sinh y, so sinh y ≥ 0. The combination
of y 6= 0 and sinh y ≥ 0 is y > 0. .

ii) Again from Question 8, Sheet 7,

d

dy
(arctan y) =

1

1 + y2

for all y ∈ R. The Composition Rule then gives

d

dy
(arctan (sinh y)) =

1

1 + (sinh y)2
× cosh y =

cosh y

cosh2 y

=
1

cosh y
,

for all y ∈ R.

iii) From Question 8, Sheet 7,

d

dx
arccosx = − 1√

1− x2

for any x ∈ (−1, 1). We could replace x by 1/ cosh y as done in part
(i), and I leave that to the interested Student.

Alternatively, replace x by tanh y since we know that tanh y ∈ (−1, 1)
for all y ∈ R. Then

d

dy
arccos (tanh y) = − 1√

1− (tanh y)2
× 1

cosh2 y
= − cosh y × 1

cosh2 y

= − 1

cosh y
.

Valid for all y ∈ R.

12. i) Calculate the first six Taylor Polynomials

Tn,0 (ln (1 + x))|x=1 , 0 ≤ n ≤ 5.

Calculate the first 6 approximations to ln 2, using these polyno-
mials with an appropriate choice of x.
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ii) Give the Taylor Series for ln (1− x) and

ln

(
1 + x

1− x

)
about 0, along with their intervals of convergence.

Note: The series for ln ((1 + x) / (1− x)) is due to Gregory, 1668

iii) Calculate the first 6 approximations to ln 2, using the first six
Taylor polynomials

Tn,0 (ln (1− x)) , 0 ≤ n ≤ 5,

with an appropriate choice of x.

iv) Calculate the first 6 approximations to ln 2, using the first six
Taylor polynomials

Tn,0

(
ln

(
1 + x

1− x

))
,

0 ≤ n ≤ 5, with an appropriate choice of x.

Solution i) Let f(x) = ln(1 + x). Then

f (1)(x) = (1 + x)−1 , so f (1)(0) = 1,

f (2)(x) = − (1 + x)−2 , so f (2)(0) = −1,

f (3)(x) = 2 (1 + x)−3 , so f (3)(0) = 2,

f (4)(x) = −3! (1 + x)−4 , so f (4)(0) = −3!,

f (5)(x) = 4! (1 + x)−5 , so f (5)(0) = 4!.

Thus the first 6 approximations to ln(1 + x), i.e. Tn,0 (ln (1 + x)) for
0 ≤ n ≤ 5, are

T0,0 (ln (1 + x)) = 0,

T1,0 (ln (1 + x)) = x,

T2,0 (ln (1 + x)) = x− x2

2
,

T3,0 (ln (1 + x)) = x− x2

2
+
x3

3
,

T4,0 (ln (1 + x)) = x− x2

2
+
x3

3
− x4

4
,

T5,0 (ln (1 + x)) = x− x2

2
+
x3

3
− x4

4
+
x5

5
.
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Choosing x = 1 we get a sequence of approximations to ln2 of

1, 0.5, 0.83, 0.583, 0.783, 0.616, ....

This sequence converges very slowly.

ii) From above we see that for each n ≥ 1, f (n)(x) = (n−1)! (1 + x)−n , so
f (n) (0) = (n−1)!. Thus the Taylor series for ln(1 + x) is

x− x2

2
+
x3

3
− x4

4
+
x5

5
− x6

6
+ ...

which converges for −1 < x ≤ 1.

Replace x by −x in the Taylor series for ln(1 + x) to get

ln(1− x) = −x− x2

2
− x3

3
− x4

4
− x5

5
− ... ,

valid for −1 ≤ x < 1. Note that

ln

(
1 + x

1− x

)
= ln(1 + x)− ln(1− x) .

We would like to obtain the Taylor series for g(x) = ln((1 + x)/(1− x))
by subtracting that for ln(1− x) from the one for ln(1 + x). But
you need to justify the subtraction of infinite series. To calculate
the Taylor series for g we need to calculate g(n) for all n ≥ 1. But
g(x) = ln(1 + x) − ln(1− x) = f(x) − h (x), say, so g(n) can be found
as the difference of the derivatives of f and h or, in other words, the
nth-term for ln((1 + x)/(1− x)) is the difference of the nth-terms for f
and h. So we are allowed to subtract term-by-term to get

ln

(
1 + x

1− x

)
= 2x+

2x3

3
+

2x5

5
+ ...

for −1 < x < 1.

iii) Put x = 1/2 in ln (1− x) to get approximations to ln 2 of

0.5, 0.625, 0.6, 0.68229..., 0.68854..., 0.6911458...., ...
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iv) Put x = 1/3 in ln ((1 + x) / (1− x)) to get approximations to ln 2
of

0.6, 0.69135..., 0.69300..., 0.69313..., 0.693146..., 0.693147...., . ..

Note ln2 = 0.69315... and in each case above we are getting sequences
that converge quicker than in the preceding case.

13. What is the maximum possible error in using T5,0f(x) to approximate
f(x) = sin x on the interval [−0.25, 0.25]?

What is the actual error when using the Taylor polynomial to approx-
imate sin (12◦)?

Solution There is no need to calculate the Taylor polynomial for
sinx, just Lagrange’s form of the error. So with f(x) = sinx we have
f (6) (x) = − sinx and

R5,0f(x) = −sin c

6!
x6

for some c between 0 and x. But |sin c| ≤ 1 and so, with |x| ≤ 0.25 we
find

|R5,0f(x)| ≤ (0.25)6

6!
= 3.390844...× 10−7. (3)

To find the actual error we do need the Taylor polynomial

T5,0f(x) = x− x3

6
+

x5

120
.

The value at 12◦ or π/15, is

T5,0f
( π

15

)
=

π

15
− 1

6

( π
15

)3
+

1

120

( π
15

)5
≈ 0.2079116943... .

The difference between the value of the Taylor polynomial and the
true value of sin (π/15) is ≈ 3.505219... × 10−9, smaller, which was to
be expected, than the bound in (3).
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14. Approximate f(x) = 3
√
x by the quadratic T2,8f(x).

How accurate is the approximation when 7 ≤ x ≤ 9?

Solution If f(x) = x1/3 then

f (1)(x) = x−2/3/3,

f (2)(x) = −2x−5/3/9,

f (3)(x) = 10x−8/3/27.

When a = 8, then f(8) = 2, f (1)(8) = 1/12, and f (2)(8) = −1/144, so

T2,8f(x) = 2 +
(x− 8)

12
− (x− 8)2

288
.

The error, in Lagrange’s form, is

R2,8f(x) =
f (3)(c)

3!
(x− 8)3

for some c between 8 and x. We are told to restrict to x ∈ [7, 9].

If x > 8 then R2,8f(x) > 0 but also 8 < c < x < 9 and so

R2,8f(x) =
10 (x− 8)3

27× 3!c8/3
<

10

27× 3!× 88/3
=

10

27× 3!× 28
< 0.000241127.

If x < 8 then R2,8f(x) < 0 but also 7 < x < c < 8 and so

R2,8f(x) =
10 (x− 8)3

27× 3!c8/3
> − 10

27× 3!× 78/3
> −0.000344263.

15. Show that the Taylor series for g(x) = (1 + x)1/2 is

∞∑
n=0

(−1)n (2n)!

4n (1− 2n) (n!)2
xn.

Hint You need to show that

g(n)(0) = (−1)n−1
(2n)!

4nn! (2n− 1)
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for all n ≥ 1.

Solution If g(x) = (1 + x)1/2 then

g(1)(x) =
1

2
(1 + x)−1/2

g(2)(x) =
1

2

(
−1

2

)
(1 + x)−3/2

g(3)(x) =
1

2

(
−1

2

)(
−3

2

)
(1 + x)−5/2

...

In general

g(n)(0) =
(1− 0)

2

(
1− 2

2

)(
1− 4

2

)
...

(
1− 2 (n− 1)

2

)

= (−1)n−1
(2n− 3) (2n− 5) ...1

2n

= (−1)n−1
(2n− 3) (2n− 4) (2n− 5) (2n− 6) ...2× 1

2n (2n− 4) (2n− 6) ...2

= (−1)n−1
(2n− 3)!

2n2n−2 (n− 2) (n− 3) ...1

= (−1)n−1
(2n− 3)!

4n−1 (n− 2)!

= (−1)n−1
1

4n−1
n (n− 1)

n!

(2n)!

(2n) (2n− 1) (2n− 2)

= (−1)n−1
(2n)!

4nn! (2n− 1)
.

Hence the Taylor Polynomial for
√

1 + x is around x = 0 is

∞∑
n=0

(−1)n−1 (2n)!

(2n− 1) (n!) (4n)

xn

n!
=
∞∑
n=0

(−1)n (2n)!

(1− 2n) (n!)2 (4n)
xn.
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16. Show that

i) the Taylor series for f(x) = 1/
√

(1 + x) around x = 0 is

∞∑
n=0

(−1)n
(2n)!

4n (n!)2
xn,

(Hint Try to reuse work you have already done. Note that appears
in the solution of Question as 2g(1) (x), with g(x) =

√
1 + x.)

ii) the Taylor series for h(x) = 1/
√

(1− x2) around x = 0 is

∞∑
n=0

(2n)!

4n (n!)2
y2n.

(Hint Use the fact that if the Taylor series of f(x) is
∑∞

n=0 anx
n

then the Taylor series of f
(
αxk

)
is
∑∞

n=0 an
(
αxk

)n
.)

iii) the Taylor Series for arcsinx around x = 0 is

∞∑
`=0

(2`)!x2`+1

4` (2`+ 1) (`!)2
.

(Note I am not asking for you to prove that any of these series converge
to the given function but you might want to think about how you could
do this.)

Solution i) By the hint given f(x) = 2g(1)(x) in which case, from
looking back at the earlier question,

f (n)(0) = 2g(n+1)(0) = 2 (−1)n
(2 (n+ 1))!

4n+1 (n+ 1)! (2 (n+ 1)− 1)

= 2 (−1)n
2 (n+ 1) (2n+ 1) (2n)!

4n+1 (n+ 1)n! (2n+ 1)

= (−1)n
(2n)!

4nn!
.

Then the Taylor Series for f is

∞∑
n=0

f (n)(0)
xn

n!
=
∞∑
n=0

(−1)n
(2n)!

4nn!

xn

n!
=
∞∑
n=0

(−1)n
(2n)!

4n (n!)2
xn.
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ii) With f(x) as in part i, we have that

1√
1− y2

= f
(
−y2

)
=
∞∑
n=0

(−1)n
(2n)!

4n (n!)2
(
−y2

)n
=
∞∑
n=0

(2n)!

4n (n!)2
y2n.

(Of course, y is simply a label and can be replaced by x).

iii) We have seen earlier that on (−1, 1) we have

d

dy
arcsin y =

1√
1− y2

.

So if k (x) = arcsin x and h (x) = 1/
√

1− x2 then, k(n) (0) = h(n−1) (0).
Note the Taylor Series for h (y) is

∞∑
n=0

(2n)!

4n (n!)2
y2n =

∞∑
n=0

((2n)!)2

4n (n!)2
y2n

(2n)!
.

From this we see that

h(m) (0) =
((2n)!)2

4n (n!)2

if m = 2n, i.e. m is even, 0 otherwise. Therefore k(n) (0) = 0 if n even,
while if n = 2`+ 1, then

k(n) (0) = h(n−1) (0) =
((2`)!)2

4n (`!)2
.

Thus the Taylor Series of k (x) = arcsin x is

∞∑
`=0

((2`)!)2

4n (`!)2
x2`+1

(2`+ 1)!
=
∞∑
`=0

(2`)!

4n (`!)2 (2`+ 1)
x2`+1.
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17. Let f(x) = sinx.

i) Prove that

f (n)
(π

4

)
=

1√
2

(
cos
(
n
π

2

)
+ sin

(
n
π

2

))
for all n ≥ 1.

ii) Show that for all n ≥ 1 both sides of the identity,

cos
(
n
π

2

)
+ sin

(
n
π

2

)
= (−1)n(n−1)/2 (4)

are the same.

Hint: Any n can be written as n = 4m+r, where r, the remainder
on dividing by 4, takes only the values r = 0, 1, 2 or 3. Show that
the values of both sides of (4) depend only on r, and so there are
only 4 cases to check.

iii) Deduce that the Taylor series for sinx around a = π/4 is

∞∑
n=0

(−1)n(n−1)/2√
2n!

(
x− π

4

)n
.

Prove that this series converges to sinx for all x.

Solution i) Take f(x) = sinx and a = π/4. Then student to check
that

f (n)(x) = sin
(
x+ n

π

2

)
and

f (n)
(π

4

)
= sin

(π
4

+ n
π

2

)
=

1√
2

(
sin
(
n
π

2

)
+ cos

(
n
π

2

))
,

by the addition formula for sine.

ii) We split into two cases. First consider n even, so n = 2m. Then

(−1)
n(n−1)

2 = (−1)m(2m−1) =
(
(−1)2m−1

)m
= (−1)m
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since 2m− 1 is odd in which case (−1)2m−1 = (−1). But also

sin
(
n
π

2

)
+ cos

(
n
π

2

)
= sin (mπ) + cos (mπ)

= 0 + (−1)m

= (−1)
n(n−1)

2 .

In the second case consider n odd, so n = 2m+ 1. Then

(−1)
n(n−1)

2 = (−1)m(2m+1) =
(
(−1)2m+1)m = (−1)m .

And

sin
(
n
π

2

)
+ cos

(
n
π

2

)
= sin

(
mπ +

π

2

)
+ cos

(
mπ +

π

2

)
= (−1)m + 0

= (−1)
n(n−1)

2 .

Hence, by combining both cases,

sin
(
n
π

2

)
+ cos

(
n
π

2

)
= (−1)

n(n−1)
2

for all n ∈ N.

iii) Combining Parts i and ii gives

f (n)
(π

4

)
= (−1)

n(n−1)
2 /
√

2

for all n. Hence
∞∑
n=0

(−1)
n(n−1)

2

√
2n!

(
x− π

4

)n
.

We next have to show that this series converges to sinx for all x ∈ R.

Let x ∈ R be given. Then, for some c between π/4 and x,∣∣Rn,π
4

(sinx)
∣∣ =

∣∣∣∣f (n+1) (c)

(n+ 1)!

(
x− π

4

)n∣∣∣∣
≤ 1

(n+ 1)!

∣∣∣x− π

4

∣∣∣n+1

→ 0

as n → ∞ since
{
|x− π/4|n+1 / (n+ 1)!

}
n≥1 is a null sequence for all

x.
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